
8 How Fast is My Beowulf

David Bailey

One of the �rst questions that a user of a new Beowulf-type system asks is, \How

fast does my system run?" Performance is more than just a curiosity for cluster

systems. It is arguably the central motivation for building a clustered system in

the �rst place|a single node is not su�cient for the task at hand. Thus the

measurement of performance, and comparisons of performance between various

available system designs and constructions, is of paramount importance.

8.1 Metrics

There are many di�erent metrics for system performance, varying greatly in their

meaningfulness and ease of measurement. Here are some of the more widely used

metrics:

1. Theoretical peak performance. This statistic is merely the maximum ag-

gregate performance of the system. For scienti�c users, this means the maximum

aggregate 
oating-point operations per second, usually calculated as

P = N �C � F �R

where P is the performance, N is the number of nodes, C is the number of CPUs

per node, F is the number of 
oating-point operations per clock period, and R is the

clock rate, measured in cycles per second. P is typically given in millions of 
oating-

point operations per second (M
op/s) or in billions of 
oating-point operations per

second (G
op/s). For non-scienti�c applications, integer operations are counted

instead of 
oating-point operations per second, and rates are typically measured

in Mop/s and Gop/s, variantly given as Mip/s and Gip/s. For non-homogeneous

systems, P is calculated as the total of the theoretical peak performance �gures for

each homogeneous sub-system.

The advantage of this metric is that is very easy to calculate, and, what's more,

there is little disputing the result|the relevant data is in many cases publicly

available. The disadvantage of this metric is that by de�nition it is unattainable

by ordinary application programs. Indeed, a growing concern of scienti�c users, in

particular, of parallel and distributed systems is that the typical gap between peak

and sustained performance seems to be increasing, not decreasing.

2. Application performance. This statistic is the number of operations per-

formed while executing an application program, divided by the total run time. As



128 Chapter 8

with theoretical peak performance, it is typically given in M
op/s, G
op/s, Mop/s

or Gop/s.

This metric, if calculated for an application program that reasonably closely

resembles the program that the user ultimately intends to run on the system, is

obviously a much more meaningful metric than theoretical peak performance. How-

ever, this metric is correspondingly harder to use, because one must �rst port the

benchmark program to the cluster system, which may be a laborious and time-

consuming task. Secondly, one must determine fairly accurately the number of


oating-point (or integer) operations actually performed by the code. Along this

line, one should ascertain that the algorithms used in the code are really the most

e�cient available for this task|otherwise one should use a 
oating-point operation

count that corresponds to that of an e�cient algorithm implementation, or else

one's results can be questioned. One key di�culty with this metric is the extent

to which the source code has been \tuned" for optimal performance on the given

system|comparing results that on one system are based on a highly tuned im-

plementation to those on another system, where the application has not be highly

tuned, can be misleading. Nonetheless, if used properly this metric can be very

useful.

3. Application run time. This statistic simply means the total wall-clock run

time for performing a given application. One advantage of this statistic is that

it frees the user from the need to count operations performed. Also, this avoids

the potential distortion of using a code to assess performance whose operation

count is larger than it needs be, due to its usage of an ine�cient algorithm. In

many regards, this is the \ultimate" metric, in the sense that it is precisely the

ultimate �gure of merit for an application running on a system. The disadvantage

of this metric is that unless one is comparing two systems, both of which have run

exactly the same application, it is hard to meaningfully compare systems based

solely on comparisons of run time performance. Further, the issue of tuning also

is present here|in comparing performance between systems one has to insure that

both implementations have been comparably tuned.

4. Scalability. Users often cite \scalability" statistics when describing the per-

formance of their system. This is usually computed as:

S =
T (1)

T (N )

where T (1) is the wall clock run time for a particular program on a single processor,

and T (N ) is the run time onN processors. A scalability �gure close to N means that



How Fast is My Beowulf 129

the program \scales" well|evidently the parallel implementation is very e�cient,

and the parallel overhead very low, so that nearly a \linear" speedup has been

achieved.

Scalability statistics can often provide useful information. For example, they

can help one determine an optimal number of processors for a given application.

But they can also be misleading, particularly if cited in the absence of application

performance statistics. For example, note that an impressive speedup statistic may

be due to a very low value of T (N ), which appears in the denominator, but it may

also be due to a large value of T (1)|in other words, an ine�cient one-processor

implementation. Indeed, it is a common experience of researchers working with

parallel systems that their speedup statistic worsens when they accelerate their

parallel program due to clever tuning. Also, it is often simply impossible to compute

this statistic, because while a the benchmark test program may run on all or most

of the processors in a system, it may require too much memory to run on a single

node.

5. Parallel e�ciency. A variant of the scalability metric is \parallel e�ciency",

which is usually de�ned to be P (N )=N . Parallel e�ciency statistics near one are

ideal. This metric su�ers from the same potential di�culties as the scalability

metric.

6. Percent of peak. Sometimes application performance statistics are given in

terms of the percent of theoretical peak performance. Such statistics are useful in

highlighting the extent to which an application is utilizing the full computational

power of the system. For example, a low percentage of peak may indicate a mis-

match of the architecture and the application, deserving further study to determine

the source of the di�culty. However, a percent-of-peak �gure by itself is not too

informative|an embarrassingly parallel application can achieve a high percentage

of peak, but this is not a notable achievement. In general, percent-of-peak �gures

beg the question: \What percentage of peak is a realistic target for a given type of

application?"

7. Latency and bandwidth. Many users are interested in the latency (time de-

lay) and bandwidth (transfer rate) of the inter-processor communications network,

since the network is one of the key elements of the system design. These metrics

have the advantage of being fairly easy to determine. The disadvantage is that the

network often performs di�erently under highly loaded situations than the latency

and bandwidth �gures by themselves reveal. And, needless to say, these metrics



130 Chapter 8

characterize only the network, and give no information on the computational speed

of individual processors.

8. System utilization. One common weakness of the above metrics is that they

tend to ignore system-level e�ects. These e�ects include competition between two

di�erent tasks running in the system, competition between I/O-intensive tasks and

non-I/O-intensive tasks, ine�ciencies in job schedulers, job start-up delays, etc.

Thus some Beowulf system users have measured the performance of a system on a

long-term throughput basis, as a contrast to conventional benchmark performance

testing.

As you can see, there no single type of performance measurement, much less

a single �gure of merit, that is simultaneously easy to determine and completely

informative. In one sense, only one �gure of merit matters, as emphasized above:

the wall clock run time for your particular application on your particular system.

But this is not easy to determine before a purchase or upgrade decision has been

made. And even if you can make such a measurement, it is not clear how to compare

your results with the thousands of other Beowulf system users around the world,

not to mention other types of systems and clusters.

These considerations have led many users of parallel and cluster systems to com-

pare performance based on a few standard benchmark programs. In this way, one

can determine if your particular system design is as e�ective (as measured by a

handful of benchmarks) as another. Such comparisons might not be entirely rele-

vant to your particular application, but with some experience you can �nd one or

more well-known benchmark that tends to give performance �gures that are well

correlated with your particular needs.

8.2 Ping-Pong Test

One of the most widely utilized measurements performed on cluster systems is the

ping-pong test, which means one of several widely available test programs that mea-

sures the latency and bandwidth of the inter-processor communications network.

There are a number of tools for testing TCP performance including netperf and

netpipe (see www.netperf.org and www.scl.ameslab.gov/netpipe). Ping-pong

tests that are appropriate for application developers measure the performance of

the user API, and are typically written in C and assume that the message passing

interface (MPI) communications library is installed on the system. More details on

downloading and running these are given in Section 11.10.



How Fast is My Beowulf 131

8.3 The Linpack Benchmark

The Linpack benchmark dates back to the early 1980s, when Jack Dongarra, then

of Argonne National Laboratory in the USA, began collecting performance results

of systems, based on their speed in solving a 100 � 100 linear system using For-

tran routines from the Linpack library. While this size problem is no longer a

supercomputer-class exercise, it is still useful for assessing the computational per-

formance of a single-processor system. In particular, it is a reasonable way to

measure the performance of a single node of a Beowulf-type system. One can ob-

tain the Linpack source code, plus instructions for running the Linpack benchmark,

from the http://www.netlib.org/benchmark.

More recently, Dongarra has released the \highly parallel computing" bench-

mark. This benchmark was developed for medium-to-large parallel and distributed

systems, and has now been tabulated on hundreds of computer systems [1, Table 3].

Unlike the basic Linpack benchmark, the scalable version does not specify a matrix

size. Instead, the user is invited to solve the largest problem that he/she can rea-

sonably run on the available system, given limitations of memory. Further, the user

is not restricted to running a �xed source code, as with the single-processor version.

Instead, one is free to use just about any reasonable programming language and

parallel computation library, including assembly-coded library routines if desired.

A portable implementation of the highly parallel Linpack benchmark, called the

High Performance Linpack (HPL) benchmark, is available. More details on down-

loading and running the HPL benchmark are given in Section 11.10.3.

During the past ten years, Dongarra and Strohmaier have compiled a running

list of the world's top 500 computers, based on the scalable Linpack benchmark.

The current listing is available from the URL http://www.top500.org. Interest-

ingly, one of the top-ranking systems is the ASCI Red system at Sandia National

Laboratory in Albuquerque, NM. The ASCI Red system is a Pentium-based clus-

ter system, although not truly a \Beowulf" system, since it has a custom-designed

inter-processor network. With a \Rmax" rating of 2.379 T
op/s (2.379 trillion


oating-point operations per second), it currently ranks number three in Top 500

list (based on the June 2001 listing).

The Linpack benchmarks are fairly easy to download and run. The calculation of

performance, once a timing �gure is obtained, is very easy. The principal advantage,

however, of these benchmarks is that there is a huge collection of results with which

one can compare|it is very easy to determine how one's system stacks up against

other similar systems.



132 Chapter 8

The principal disadvantage of the Linpack benchmarks, both single-processor

and parallel, is that they tend to over-estimate the performance that real-world

scienti�c applications can expect to achieve on a given system. This is because

the Linpack codes are \dense matrix" calculations, which have very favorable data

locality characteristics. It is not uncommon for the scalable Linpack benchmark,

for example, to achieve 30% or more of the theoretical peak performance potential

of a system. Real scienti�c application codes, in contrast, seldom achieve more

than 10% of the peak �gure on modern distributed memory parallel systems such

as Beowulf systems.

8.4 The NAS Parallel Benchmark Suite

The NAS Parallel Benchmark (NPB) suite was designed at NASA Ames Research

Center in 1990 to typify high-end aeroscience computations. This suite consists

of eight individual benchmarks, including �ve general computational kernels and

three simulated computational 
uid dynamics applications:

EP An \embarrassingly parallel" calculation|requires almost no inter-processor

communication.

MG A multigrid calculation|tests both short- and long-distance communication.

CG A conjugate gradient calculation|tests irregular communication.

FT A 3-D fast Fourier transform calculation|tests massive all-to-all communica-

tion.

IS An integer sort|involves integer data and irregular communication.

LU A simulated 
uid dynamics application, using the \LU" approach.

SP A simulated 
uid dynamics application, using the \SP" approach.

BT A simulated 
uid dynamics application, using the \BT" approach.

The original NAS Parallel Benchmark suite was a \paper-and-pencil" speci�cation|

the speci�c calculations to be performed for each benchmark were speci�ed in a tech-

nical document, even down to the detail of how to generate the initial data. Some

straightforward one-processor sample program codes were provided in the original

release, but it was intended that those implementing this suite would utilize one of

several vendor-speci�c parallel programming models available at the time (1990).



How Fast is My Beowulf 133

The original NPB problem set was deemed the \Class A" size. Subsequently some

larger problem sets were de�ned: \Class B", which are about four times as large as

the Class A problems, and \Class C", which are about four times as large as the

Class B problems. The small single-processor sample codes are sometimes referred

to as the \Class W" size.

Since the time of the original NPB release, implementations of the NPB using

MPI and also OpenMP have been provided by the NASA team. These are available

at the URL http://www.nas.nasa.gov/Software/NPB/.

As with the Linpack benchmark, the NPB suite can be used both to measure

the performance of a single node of a Beowulf system, or the entire system. In

particular, the \sample" or \Class W" size problems can be easily run on a single-

processor system. For a Beowulf system with say 32 processors, the Class A size

is an appropriate test. The Class B problems are appropriate for systems with

roughly 32{128 processors. The Class C problems can be used for systems with up

to 256 CPUs.

Unfortunately, the NASA research team that designed and championed the NPB

suite has now almost entirely left NASA (note that the author, one of the designers

of the NPB, is now at LBNL). As a result, NASA is no longer actively supporting

and promoting the benchmarks. Thus there probably will not be a \Class D"

problem size, etc. Further, NASA is no longer actively collecting results.

However, the NPB suite continues to attract attention from the parallel com-

puting research community. This is because it is fairly widely recognized that

the NPB suite re
ects real-world parallel scienti�c computation, to a signi�cantly

greater degree than most other available benchmarks.

We recommend that users of Beowulf-type systems use the MPI version of the

NPB suite. Instructions for downloading, installing and running the suite are given

at the NPB web site.

This chapter was processed by LATEX on June 27, 2001.





References

[1] Jack Dongarra. Performance of various computers using standard linear equations software.
Technical Report Computer Science Technical Report Number CS-89{85, University of Ten-
nessee, Knoxville TN, 37996, 2001. http://www.netlib.org/benchmark/performance.ps.



Index

A

ASCI Red, 131

B

bandwidth, 129
benchmark
high perforance Linpack, 131
Linpack, 131
NPB, 132
ping pong, 130

H

HPL, 131

L

latency, 129
Linpack, 131

N

netperf, 130
netpipe, 130
NPB, 132

P

parallel e�ciency, 129
peak performance, 127
performance
peak, 127

ping pong, 130


